1. | \(3.08 \times 10^{-7} cm^{-1}\) | 2. | \(30.8 \times 10^{-7} cm^{-1}\) |
3. | \(0.308 \times 10^{-9} cm^{-1}\) | 4. | \(4.08 \times 10^{-6} cm^{-1}\) |
Compound A used as a strong oxidizing agent is amphoteric in nature. It is part of lead storage batteries. Compound A is :
1. PbO2
2. PbO
3. PbSO4
4. Pb3O4
(Rounded off to the nearest integer)
\(\begin{aligned} & \text { Given; } \mathrm{E}_{\mathrm{Zn}^{2+}}^{\mathrm{o}} / \mathrm{Zn}=-0.76 \mathrm{~V} \\ & \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\mathrm{o}}=+0.80 \mathrm{~V} ; \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059 \end{aligned}\)
1. 157
2. 147
3. 144
4. 154
The gibbs energy change (in J) for the given reaction at [Cu2+] = [Sn2+] = 1 M and 298K is-
1. 97850 J
2. 3500 J
3. 45660 J
4. 96500 J
An oxidation-reduction reaction in which 3 electrons are transferred has a of 17.37 kJ mol–1 at 25°C. The value of (in V) is A× 10–2. The value of A is-
(1 F = 96,500 C mol–1)
1. -6
2. 4
3. -8
4. 2
The variation of molar conductivity with the concentration of an electrolyte (X) in an aqueous solution is shown in the given figure.
The electrolyte X is:
1. | CH3COOH | 2. | KNO3 |
3. | HCl | 4. | NaCl |
For the given cell :
change in Gibbs energy is negative, if:
1.
2.
3.
4.
A solution of Ni(NO3)2 is electrolysed between platinum electrodes using 0.1 Faraday electricity. The number of moles of Ni that will be deposited at the cathode are:
1. | 0.10 | 2. | 0.05 |
3. | 0.20 | 4. | 0.15 |
The standard Gibbs energy for the given cell reaction in kJ mol–1 at 298 K is :
Eº(cell) = 2V at 298 K
(Faraday’s constant, F = 96000 C mol–1)
1. | –192 kJ mol–1 | 2. | 192 kJ mol–1 |
3. | –384 kJ mol–1 | 4. | 384 kJ mol–1 |
Consider the values of reduction potential:
\(\mathrm{Co}^{3+}+e^{-} \rightarrow \mathrm{Co}^{2+} ; E^{\circ}=+1.81 \mathrm{~V}\)
\(\mathrm{~Pb}^{4+}+2 e^{-} \rightarrow \mathrm{Pb}^{2+} ; E^{\circ}=+1.67 \mathrm{~V}\)
\(\mathrm{Ce}^{4+}+e^{-} \rightarrow C e^{3+} ; E^{\circ}=+1.61 \mathrm{~V}\)
\( \mathrm{Bi}^{3+}+3 e^{-} \rightarrow \mathrm{Bi} ; E^{\circ}=+0.20 \mathrm{~V}\)
The oxidizing power of the species will increase in the order of:
1. | \(C o^{3+}<C e^{4+}<B i^{3+}<P b^{4+}\) |
2. | \(\mathrm{Co}^{3+}<P b^{4+}<C e^{4+}<B i^{3+}\) |
3. | \(C e^{4+}<P b^{4+}<B i^{3+}<C o^{3+}\) |
4. | \(B i^{3+}<C e^{4+}<P b^{4+}<C o^{3+}\) |