A vector \({\vec{A}}\) is rotated by small angle \(\mathrm{\Delta}\mathrm{\theta}\) radians \(({\Delta}\theta<<1)\) to get a new vector \(\vec{B}.\) In that case \(|\vec{B}-\vec{A}|\) is: 
1. \(\vec{A}|\Delta \theta|\)
2. \(\mathrm{|\vec{B}| \Delta \theta-|\vec{A}|}\)
3. \(|\vec{\mathrm{A}}|\left(1-\frac{\Delta \theta^2}{2}\right)\)
4. \(0\)
Subtopic:  Resultant of Vectors |
From NCERT
JEE
Please attempt this question first.
Hints

Let \(\vec{A}=(\hat{i}+\hat{j})\) and \(\vec{B}=(\hat{2} i-\hat{j}) .\) The magnitude of a coplanar vector \(\vec C \) such that \(\vec A.\vec C=\vec B.\vec C=\vec A.\vec B\) is given by:
1. \(\sqrt{\frac{9}{12}}\)
2. \(\sqrt{\frac{20}{9}}\)
3. \(\sqrt{\frac{5}{9}}\)
4. \(\sqrt{\frac{10}{9}}\)
Subtopic:  Vector Product |
From NCERT
JEE
Please attempt this question first.
Hints

Let \(\left|\vec{A_1}\right|=3,\left|\vec{A_2}\right|=5\) and \(\left|\vec{A_1}+\vec{A_2}\right|=5.\) The value of \(\left(\vec{2 A_1}+3 \vec{A_2}\right) \cdot\left(3 \vec{A_1}-2 \vec{A_2}\right) \) is:
1. \(-112.5\)
2. \(-106.5\)
3. \(-118.5\)
4. \(-99.5\)

Subtopic:  Scalar Product |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

A balloon is moving up in air vertically above a point \(A\) on the ground. When it is at a height \(h_1\), a girl standing at a distance \(d\) (point \(B\)) from \(A\) (See figure) sees it at an angle \(45^\circ\) with respect to the vertical. When the balloon climbs up a further height \(h_2\), it is seen at an angle \(60^\circ\) with respect to the vertical if the girl moves further by a distance \(2.464 d\) (point \(C\)). Then the height \(h_2\) is: (given \(\tan 30^{\circ}=0.5774\)):

 

1. \(d\)
2. \(0.732d\)
3. \(1.464 d\)
4. \(0.464 d\)

Subtopic:  Trigonometry |
From NCERT
JEE
Please attempt this question first.
Hints

A particle moving in the xy plane experiences a velocity-dependent force \(\vec F= k\left(v_y\hat i +v_x \hat j\right)\) where \(v_x\) and \(v_y\) are the \(x\) and \(y\) components of its velocity \(\vec{v}\). If \(\vec{a}\) is the acceleration of the particle, then which of the following statements is true for the particle? 

1. Quantity \(\vec{v}.\vec{a}\) is constant in time. 
2. Kinetic energy of particle is constant in time. 
3. Quantity \(\vec{v}\times\vec{a}\) is constant in time. 
4. \(\vec{F}\) arises due to a magnetic field. 

Subtopic:  Vector Product |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

In an octagon \(\text{ABCDEFGH}\) of equal side, what is the sum of \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{AG}}+\overrightarrow{\mathrm{AH}}\) if \(\overrightarrow{\mathrm{AO}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)

  
1. \( -16 \hat{i}-24 \hat{j}+32 \hat{k} \)
2. \( 16 \hat{i}+24 \hat{j}-32 \hat{k} \)
3. \( 16 \hat{i}+24 \hat{j}+32 \hat{k} \)
4. \(16 \hat{i}-24 \hat{j}+32 \hat{k}\)

Subtopic:  Resultant of Vectors |
From NCERT
JEE
Please attempt this question first.
Hints

advertisementadvertisement

If \(\vec{P} \times \vec{Q}=\vec{Q} \times \vec{P},\) the angle between \(\vec{P}\) and \(\vec{Q}\) is \(\theta\) \((0^\circ<\theta<360^\circ),\) then the value of \(\theta\) will be:
1. \(30^\circ\)
2. \(60^\circ\)
3. \(90^\circ\)
4. \(180^\circ\)

Subtopic:  Vector Product |
 60%
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.


\(\vec A\) is a vector quantity such that \(| \vec A|\) = non-zero constant. Which of the following expressions is true for \(\vec A\)
1. \(\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=0 \)
2. \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}<0 \)
3. \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}=0 \)
4. \(\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{A}}>0\)
Subtopic:  Scalar Product |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

Which of the following relations is true for two unit vectors \(\hat A\) and \(\hat B\) making an angle \(\theta\) to each other? 
1. \(|\hat{\mathrm{A}}+\hat{\mathrm{B}}|= |\hat{\mathrm{A}}-\hat{\mathrm{B}} \mid \tan \frac{\theta}{2} \)
2. \(|\hat{\mathrm{A}}-\hat{\mathrm{B}}|=|\hat{\mathrm{A}}+\hat{\mathrm{B}}| \tan \frac{\theta}{2} \)
3. \(|\hat{\mathrm{A}}+\hat{\mathrm{B}}|=|\hat{\mathrm{A}}-\hat{\mathrm{B}}| \cos \frac{\theta}{2} \)
4. \(|\hat{\mathrm{A}}-\hat{\mathrm{B}}|=|\hat{\mathrm{A}}+\hat{\mathrm{B}}| \cos \frac{\theta}{2}\)
Subtopic:  Resultant of Vectors |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

Two vectors \(\vec A \) and \(\vec B\) have equal magnitudes. If the magnitude of \(\vec A + \vec B\) is equal to two times the magnitude of \(\vec A - \vec B\), then the angle between \(\vec A \) and \(\vec B\) will be:
1. \(\sin ^{-1}\left(\frac{3}{5}\right) \)
2. \(\sin ^{-1}\left(\frac{1}{3}\right) \)
3. \(\cos ^{-1}\left(\frac{3}{5}\right) \)
4. \(\cos ^{-1}\left(\frac{1}{3}\right)\)
Subtopic:  Resultant of Vectors |
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.