In an octagon \(\text{ABCDEFGH}\) of equal side, what is the sum of \(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}+\overrightarrow{\mathrm{AG}}+\overrightarrow{\mathrm{AH}}\) if \(\overrightarrow{\mathrm{AO}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}\)
1. \( -16 \hat{i}-24 \hat{j}+32 \hat{k} \)
2. \( 16 \hat{i}+24 \hat{j}-32 \hat{k} \)
3. \( 16 \hat{i}+24 \hat{j}+32 \hat{k} \)
4. \(16 \hat{i}-24 \hat{j}+32 \hat{k}\)
1. | \(\dfrac A2\) | 2. | \(\dfrac {\sqrt {5}A} { 2}\) |
3. | \(\dfrac {3A} {2}\) | 4. | \(\dfrac {5A} {2}\) |