A particle executes simple harmonic motion with a time period \(T.\) It starts at its equilibrium position at \(t=0.\) How will the graph of its kinetic energy \((KE)\) versus time \((t)\) look like?
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
1. | \(\frac{1}{2}m\omega^2A^2+\frac{1}{2}\frac{q^2E^2}{k}.\) | The total energy of the system is
2. | \(\frac{2qE} {k}\) from \(x = 0.\) | The new equilibrium position is at a distance
3. | \(\frac{qE} {2k}\) from \(x = 0.\) | The new equilibrium position is at a distance
4. | The total energy of the system is \(\frac{1}{2}m\omega^2A^2-\frac{1}{2}\frac{q^2E^2}{k}.\) |
1. | |
2. | |
3. | 4. |
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
1. | \(\left({{{A}\over{2}}}\right)\) | 2. | \(\left({{{A}\over{\sqrt{2}}}}\right)\) |
3. | \(\left({{{A}\over{2\sqrt{2}}}}\right)\) | 4. | \(\left({{{A}\over{4}}}\right)\) |
1. | \( { K.E. }=\frac{k A^2}{8} \\ { P.E. }=\frac{3 k A^2}{8} \\ v=\frac{A}{3} \sqrt{\frac{k}{m}} \) | 2. | \({ K.E. }=\frac{3 k A^2}{8} \\ { P.E. }=\frac{k A^2}{8} \\ v=\frac{A}{2} \sqrt{\frac{3 k}{m}} \) |
3. | \({ K.E. }=\frac{3 k A^2}{8} \\ { P.E. }=\frac{k A^2}{4} \\ v=A \sqrt{\frac{3 k}{m}} \) | 4. | \({ K.E. }=\frac{k A^2}{4} \\ { P.E. }=\frac{3 k A^2}{8} \\ v=\frac{A}{4} \sqrt{\frac{3 k}{m}} \) |