An electron with \(144~\text{eV}\) of kinetic energy has a de-Broglie wavelength that is very similar to?
1. \(102\times10^{-3}~\text{nm}\)
2. \(102\times10^{-4}~\text{nm}\)
3. \(102\times10^{-5}~\text{nm}\)
4. \(102\times10^{-2}~\text{nm}\)

Subtopic:  De-broglie Wavelength |
 53%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two radiations of photons energies \(1\) eV and \(2.5\) eV, successively illuminate a photosensitive metallic surface of work function \(0.5\) eV. The ratio of the maximum speeds of the emitted electrons is:
1. \(1:2\)
2. \(1:1\)
3. \(1:5\) 
4. \(1:4\)

Subtopic:  Electron Emission |
 77%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the momentum of an electron is changed by \(P,\) then the de-Broglie wavelength associated with it changes by \(0.5\%.\) The initial momentum of an electron will be:
1. \(400P\)
2. \(\frac{P}{100}\)
3. \(100P\)
4. \(200P\)

Subtopic:  De-broglie Wavelength |
 68%
From NCERT
AIPMT - 2012
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The threshold frequency for a photosensitive metal is \(3.3\times10^{14}~\text{Hz}\). If the light of frequency \(8.2\times10^{14}~\text{Hz}\) is incident on this metal, the cutoff voltage for the photoelectric emission will be:

1. \(1~\text{V}\) 2. \(2~\text{V}\)
3. \(3~\text{V}\) 4. \(5~\text{V}\)
Subtopic:  Einstein's Photoelectric Equation |
 69%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When monochromatic radiation of intensity I falls on a metal surface, the number of photoelectrons and their maximum kinetic energy are N and T respectively. If the intensity of radiation is 2I, the number of emitted electrons and their maximum kinetic energy are respectively:

1. 2N and T

2. 2N and 2T

3. N and T

4. N and 2T

Subtopic:  Electron Emission |
 83%
From NCERT
AIPMT - 2010
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What did Einstein prove by the photo-electric effect?
1. \(E = h\nu\)
2. \(K.E = \frac{1}{2}mv^2\)
3. \(E= mc^2\)
4. \(E = \frac{-Rhc^2}{n^2}\)

Subtopic:  Einstein's Photoelectric Equation |
 60%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A light of wavelength \(\lambda \) is incident on the metal surface and the ejected fastest electron has speed \(v.\) If the wavelength is changed to \(\frac{3\lambda}{4},\) then the speed of the fastest emitted electron will be:

1. smaller than \(\sqrt{\frac{4}{3}}v\)
2. greater than \(\sqrt{\frac{4}{3}}\)\(v\)
3. \(2v\)
4. zero
Subtopic:  Einstein's Photoelectric Equation |
 69%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The work functions for metals \(A,B,\) and \(C\) are respectively \(1.92\) eV, \(2.0\) eV, and \(5\) eV. According to Einstein's equation, the metals that will emit photoelectrons for a radiation of wavelength \(4100~\mathring{A}\) is/are:
1. None
2. \(A\) only
3. \(A\) and \(B\) only
4. All the three metals

Subtopic:  Einstein's Photoelectric Equation |
 78%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The work function of a metal surface is \(\phi = 1.5\) eV. If a light of wavelength \(5000~\mathring{A}\) falls on it, then the maximum K.E of the ejected electron will be:
1. \(1.2\) eV 2. \(0.98\) eV
3. \(0.45\) eV 4. \(0\) eV
Subtopic:  Einstein's Photoelectric Equation |
 80%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A photosensitive metallic surface has a work function of \(h\nu_0\). If photons of energy \(2h\nu_0\) fall on this surface, the electrons come out with a maximum velocity of \(4\times10^{6}\) m/s. When the photon energy is increased to \(5h\nu_0\), then the maximum velocity of photoelectrons will be:
1. \(2\times 10^7~\text{m/s}\)
2. \(2\times 10^6~\text{m/s}\)
3. \(8\times 10^5~\text{m/s}\)
4. \(8\times 10^6~\text{m/s}\)

Subtopic:  Einstein's Photoelectric Equation |
 78%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch