1. | \(2\pi{\sqrt{\large\frac{l}{g}}}\) | 2. | \(6\pi{\sqrt{\large\frac{l}{g}}}\) |
3. | \(2\pi{\sqrt{\large\frac{9l}{8g}}}\) | 4. | \(2\pi{\sqrt{\large\frac{3l}{g}}}\) |
1. | \(2 \pi \sqrt{\dfrac{m}{k}} \) | 2. | \(\pi \sqrt{\dfrac{m}{k}} \) |
3. | \(4\pi \sqrt{\dfrac{m}{k}}\) | 4. | \(\dfrac{\pi}{2} \sqrt{\dfrac{m}{k}}\) |
The energy of the block is \(E\), and the plane is smooth, the wall at the end \(B\) is smooth. Collisions with walls are elastic. The distance \(AB=l\), the spring is ideal and the spring constant is \(k\). The time period of the motion is:
1. | \(2\pi\sqrt{\dfrac{m}{k}}\) |
2. | \(\pi\sqrt{\dfrac{m}{k}}+l\sqrt{\dfrac{2m}{E}}\) |
3. | \(2\pi\sqrt{\dfrac{m}{k}}+2l\sqrt{\dfrac{2m}{E}}\) |
4. | \(\pi\sqrt{\dfrac{m}{k}}+l\sqrt{\dfrac{m}{2E}}\) |
1. | \(2\pi\sqrt{\dfrac{l}{g}}+2\pi\sqrt{\dfrac{m}{k}}\) | 2. | \(\pi\sqrt{\dfrac{l}{g}}+\pi\sqrt{\dfrac{m}{k}}\) |
3. | \(\sqrt{\dfrac{g}{l}}+\sqrt{\dfrac{k}{m}}\) | 4. | \(\dfrac{1}{2\pi}\sqrt{\dfrac{g}{l}}+\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}}\) |