List-I (Application of Gauss Law) |
List-II (Value of \(|E|\)) |
||
A. | The field inside a thin shell | I. | \( \dfrac{\lambda}{2 \pi \varepsilon_0 r} \hat{n} \) |
B. | The field outside a thin shell | II. | \( \dfrac{q}{4 \pi \varepsilon_0 R^2} \hat{r} \) |
C. | The field of thin shell at the surface | III. | \( \dfrac{q}{4 \pi \varepsilon_0 r^2} \hat{r}\) |
D. | The field due to a long charged wire | IV. | zero |
1. | A-IV, B-III, C-I, D-II |
2. | A-I, B-II, C-III, D-IV |
3. | A-IV, B-III, C-II, D-I |
4. | A-I, B-III, C-II, D-IV |
1. | \(0.125\times10^{-3}~\text{C m}^{-2}\) | 2. | \(0.25\times10^{-3}~\text{C m}^{-2}\) |
3. | \(4\times10^{-3}~\text{C m}^{-2}\) | 4. | \(0.4\times10^{-3}~\text{C m}^{-2}\) |
1. | the electric field inside the surface is necessarily uniform. |
2. | the number of flux lines entering the surface must be equal to the number of flux lines leaving it. |
3. | the magnitude of electric field on the surface is constant. |
4. | all the charges must necessarily be inside the surface. |
1. | the area of the surface. |
2. | the quantity of charges enclosed by the surface. |
3. | the shape of the surface. |
4. | the volume enclosed by the surface. |
1. | \(\dfrac{Q}{\varepsilon_0}\times10^{-6}\) | 2. | \(\dfrac{2Q}{3\varepsilon_0}\times10^{-3}\) |
3. | \(\dfrac{Q}{6\varepsilon_0}\times10^{-3}\) | 4. | \(\dfrac{Q}{6\varepsilon_0}\times10^{-6} \) |
1. | \(\dfrac{1}{{R}^{6}}\) | 2. | \(\dfrac{1}{{R}^{2}}\) |
3. | \(\dfrac{1}{{R}^{3}}\) | 4. | \(\dfrac{1}{{R}^{4}}\) |
Twelve point charges each of charge \(q~\text C\) are placed at the circumference of a circle of radius \(r~\text{m}\) with equal angular spacing. If one of the charges is removed, the net electric field (in \(\text{N/C}\)) at the centre of the circle is:
(\(\varepsilon_0\text- \)permittivity of free space)
1. | \(\dfrac{13q}{4\pi \varepsilon_0r^2}\) | 2. | zero |
3. | \(\dfrac{q}{4\pi \varepsilon_0r^2}\) | 4. | \(\dfrac{12q}{4\pi \varepsilon_0r^2}\) |