The equation: \(Y=A\sin(\omega t+\phi_0)\) represents the time-displacement relation of simple harmonic motion (SHM). At \(t=0,\) the displacement of the particle is \(Y=\dfrac{A}{2},\) and it is moving in the negative \(x\text-\)direction. The initial phase angle \(\phi_0\) is:
1. \(\dfrac{\pi}{6}\)
2. \(\dfrac{\pi}{3}\)
3. \(\dfrac{5\pi}{6}\)
4. \(\dfrac{2\pi}{3}\)
The time period of a simple pendulum is \(T\). The time taken to complete \(\dfrac{5}{8}\) oscillations starting from the mean position is \(\dfrac{\alpha }{\beta}T\). The value of \(\alpha \) is:
1. | \(3\) | 2. | \(6\) |
3. | \(7\) | 4. | \(10\) |
1. | \(R ~\text{sin} \left(\omega t+\dfrac{\pi}{6}\right) \) | 2. | \(R~ \text{cos} \left(\omega t+\dfrac{\pi}{6}\right) \) |
3. | \(R~ \text{sin} \left(\omega t-\dfrac{\pi}{6}\right) \) | 4. | \(R~ \text{cos} \left(\omega t-\dfrac{\pi}{6}\right) \) |
1. | \({\pi \over 3 }~ \text{rad}\) | 2. | \({\pi \over 6 }~ \text{rad}\) |
3. | \({\pi \over 4 } ~\text{rad}\) | 4. | \({5\pi \over 6 }~\text{rad}\) |