Huygens' wave theory allows us to know the:

1.  wavelength of the wave.
2.  velocity of the wave.
3.  amplitude of the wave.
4.  propagation of the wavefront.

Subtopic:  Huygens' Principle |
 85%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


When the light diverges from a point source, the shape of the wavefront is:
1. Parabolic
2. Plane
3. Spherical
4. Elliptical

Subtopic:  Huygens' Principle |
 85%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


By Huygen's wave theory of light, we cannot explain the phenomenon of:

1. Interference
2. Diffraction
3. Photoelectric effect
4. Polarisation

Subtopic:  Huygens' Principle |
 73%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

Huygen's principle for secondary wavelets may be used to:

1. explain Snell's law.
2. find the velocity of light in vacuum.
3. find a new position of a wavefront.
4. both (1) & (3) are correct.

Subtopic:  Huygens' Principle |
 70%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Which of the following is not true?

1. The speed of light is dependent on the colour of the light.
2. The speed of violet light is less than the speed of the red light in glass.
3. The frequency of light never depends upon the property of the medium.
4. When the light diverges from a point source, the shape of the wavefront is plane.
Subtopic:  Huygens' Principle |
 76%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Given below are two statements: 
Assertion (A): Corpuscular theory fails in explaining the velocities of light in air and water.
Reason (R): According to corpuscular theory, light should travel faster in denser media than in rarer media.
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. (A) is False but (R) is True.
Subtopic:  Huygens' Principle |
 63%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

Light travels faster in the air than in glass. This is in accordance with:

1. the wave theory of light.
2. the corpuscular theory of light.
3. neither \((1)\) nor \((2)\)
4. both \((1)\) and \((2)\)
Subtopic:  Huygens' Principle |
 61%

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


Sound waves travel faster in water than in air. Imagine a plane sound wavefront incident at an angle \(\alpha\) at the air-water interface; the refracted wavefront making an angle \(\beta\) with the interface. Then,
1. \(\alpha>\beta\)
2. \(\beta>\alpha\)
3. \(\alpha=\beta\)
4. the relation between \(\alpha~\&~\beta \) cannot be predicted.
Subtopic:  Huygens' Principle |
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


The plane wavefront is incident on a spherical mirror as shown. The reflected wavefront will be:

1. 2.
3. 4.
Subtopic:  Huygens' Principle |
 55%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

Two superposing waves are represented by the following equations: \(y_1=5 \sin 2 \pi(10{t}-0.1 {x}), {y}_2=10 \sin 2 \pi(10{t}-0.1 {x}).\) 
The ratio of intensities \(\dfrac{I_{max}}{I_{min}}\) will be:
1. \(1\)
2. \(9\)
3. \(4\)
4. \(16\)

Subtopic:  Superposition Principle |
 86%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Next Hint

To unlock all the explanations of this course, you need to be enrolled.