Huygens' wave theory allows us to know the:
1. | wavelength of the wave. |
2. | velocity of the wave. |
3. | amplitude of the wave. |
4. | propagation of the wavefront. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
When the light diverges from a point source, the shape of the wavefront is:
1. Parabolic.
2. Plane.
3. Spherical.
4. Elliptical.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
By Huygen's wave theory of light, we cannot explain the phenomenon of:
1. | Interference |
2. | Diffraction |
3. | Photoelectric effect |
4. | Polarisation |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Which of the following is not true?
1. | The speed of light is dependent on the colour of the light. |
2. | The speed of violet light is less than the speed of the red light in glass. |
3. | The frequency of light never depends upon the property of the medium. |
4. | When the light diverges from a point source, the shape of the wavefront is plane. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Two superposing waves are represented by the following equations: \(y_1=5 \sin 2 \pi(10{t}-0.1 {x}), {y}_2=10 \sin 2 \pi(10{t}-0.1 {x}).\)
The ratio of intensities \(\dfrac{I_{max}}{I_{min}}\) will be:
1. \(1\)
2. \(9\)
3. \(4\)
4. \(16\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Two sources with intensity \(I_0\) and \(4I_0\) respectively interfere at a point in a medium. The maximum and the minimum possible intensity respectively would be:
1. \(2I_0, I_0\)
2. \(9I_0, 2I_0\)
3. \(4I_0, I_0\)
4. \(9I_0, I_0\)
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Two light sources are said to be coherent when their:
1. | Amplitudes are equal and have a constant phase difference |
2. | Wavelengths are equal. |
3. | Intensities are equal. |
4. | Frequencies are equal and have a constant phase difference. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is \(\lambda\) is \(K\), (\(\lambda\) being the wavelength of light used). The intensity at a point where the path difference is \(\frac{\lambda}{4}\) will be:
1. \(K\)
2. \(\frac{K}{4}\)
3. \(\frac{K}{2}\)
4. zero
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.