Which one of the following gives the value of the magnetic field according to Biot-Savart’s law?
1. | \(\frac{{i} \Delta {l} \sin (\theta)}{{r}^2} \) | 2. | \(\frac{\mu_0}{4 \pi} \frac{i \Delta {l} \sin (\theta)}{r} \) |
3. | \(\frac{\mu_0}{4 \pi} \frac{{i} \Delta{l} \sin (\theta)}{{r}^2} \) | 4. | \(\frac{\mu_0}{4 \pi} {i} \Delta {l} \sin (\theta)\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(0^{\circ}\) | 2. | \(90^{\circ}\) |
3. | \(180^{\circ}\) | 4. | \(45^{\circ}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
An element \(\Delta l=\Delta x \hat{i}\) is placed at the origin and carries a large current of \(I=10\) A (as shown in the figure). What is the magnetic field on the \(y\text-\)axis at a distance of \(0.5\) m? \((\Delta x=1~\text{cm})\)
1. | \(6\times 10^{-8}~\text{T}\) | 2. | \(4\times 10^{-8}~\text{T}\) |
3. | \(5\times 10^{-8}~\text{T}\) | 4. | \(5.4\times 10^{-8}~\text{T}\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(0\) | 2. | \(1.2\times 10^{-4}~\text{T}\) |
3. | \(2.1\times 10^{-4}~\text{T}\) | 4. | None of these |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Which one of the following expressions represents Biot-Savart's law? Symbols have their usual meanings.
1. | \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \times \hat r)}{4 \pi|\overrightarrow{\mathrm{r}}|^3}\\ \) | 2. | \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \times \hat r)}{4 \pi|\overrightarrow{\mathrm{r}}|^2} \) |
3. | \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \times \vec{r})}{4 \pi|\vec{r}|^3} \) | 4. | \(\overrightarrow{d B}=\frac{\mu_0 \mathrm{I}(\overrightarrow{d l} \cdot \vec{r})}{4 \pi|\overrightarrow{\mathrm{r}}|^3}\) |
1. | \(nB\) | 2. | \(n^2B\) |
3. | \(2nB\) | 4. | \(2n^2B\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
1. | \(3.33\times 10^{-9}\) Tesla |
2. | \(1.11\times 10^{-4}\) Tesla |
3. | \(3\times 10^{-3}\) Tesla |
4. | \(9\times 10^{-2}\) Tesla |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Two similar coils of radius \(R\) are lying concentrically with their planes at right angles to each other. The currents flowing in them are \(I\) and \(2I,\) respectively. What will be the resultant magnetic field induction at the centre?
1. | \(\sqrt{5} \mu_0I \over 2R\) | 2. | \({3} \mu_0I \over 2R\) |
3. | \( \mu_0I \over 2R\) | 4. | \( \mu_0I \over R\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
The resistances of three parts of a circular loop are as shown in the figure. What will be the magnetic field at the centre of \(O\)
(current enters at \(A\) and leaves at \(B\) and \(C\) as shown)?
1. | \(\dfrac{\mu_{0} I}{6 a}\) | 2. | \(\dfrac{\mu_{0} I}{3 a}\) |
3. | \(\dfrac{2\mu_{0} I}{3 a}\) | 4. | \(0\) |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.
Which of the following graphs correctly represents the variation of magnetic field induction with distance due to a thin wire carrying current?
1. | 2. | ||
3. | 4. |
To unlock all the explanations of this course, you need to be enrolled.
To unlock all the explanations of this course, you need to be enrolled.