I2(s) + 5F2(g)  2IF5(g) 

The equilibrium constant Kc expression for the above mentioned reaction is:
1. \(\mathrm{K_{C} = \dfrac{\left[IF_{5}\right]^{2}}{\left[F_{2}\right]^{5}}}\) 2. \(\mathrm{K_{C} = \dfrac{\left[IF_{5}\right]^{2}}{\left[F_{2}\right]^{5} \left[I_{2}\right]}}\)
3. \(\mathrm{K_{C} = \dfrac{\left[F_{2}\right]^{5} \left[I_{2}\right]}{\left[IF_{2}\right]^{2}}}\) 4. \(\mathrm{K_{C} = \dfrac{\left[F_{2}\right]^{5}}{\left[IF_{5}\right]^{2}}}\)
Subtopic:  Introduction To Equilibrium |
 80%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


Ka1, Ka2 and Ka3 are the respective ionisation constants for the following reactions.
\(\mathrm{H}_2 \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}\)
\(\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}\)
\(\mathrm{H}_2 \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}\)
The correct relationship between Ka1, Ka2 and Ka3 is:
1. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1} \times \mathrm{K}_{\mathrm{a}_2} \)
2. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1}+\mathrm{K}_{\mathrm{a}_2} \)
3. \(K_{a_3}=K_{a_1}-K_{a_2} \)
4. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1} / \mathrm{K}_{\mathrm{a}_2}\)

Subtopic:  Introduction To Equilibrium |
 81%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


Reaction quotient for the reaction, N2(g)+3H2(g)2NH3(g) is given by , Q = [NH3]2[N2][H2]3 .The reaction will proceed from right to left if Kc value is:

1. Q<Kc  2. Q=0
3. Q>Kc  4. Q=Kc 
Subtopic:  Introduction To Equilibrium |
 75%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

In the reaction A(g) + 2B(g) ⇌ 2C(g) + D(g), the initial concentration of B is twice that of A and, at equilibrium, the concentrations of A and D are equal. The value of the equilibrium constant will be:

1. 4 2. 16
3. 2 4. 1
Subtopic:  Introduction To Equilibrium |
 68%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


For the following reaction, 
 H2(g)+I2(g)2HI(g) at 250°C,

The effect on the state of equilibrium on doubling the volume of the system will be:

1. Shift to the reactant side 2. Shift to the product side 
3. No effect on the state of equilibrium 4. Liquefaction of HI

Subtopic:  Le Chatelier's principle |
 84%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


Given a hypothetical reaction :
AB2g+12B2gAB3g; H=-x kJ
More  could be produced at equilibrium by :

1. Using a catalyst 2. Removing some of Bgas
3. Increasing the temperature 4. Increasing the pressure
Subtopic:  Le Chatelier's principle |
 75%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

(a) PCl5 (g) PCl3 (g) + Cl2 (g)

(b) CaO (s) + CO2 (g)   CaCO3 (s)

(c) 3Fe (s) + 4H2O (g)  Fe3O4 (s) + 4H2 (g)

The effect of an increase in the volume on the number of moles of products in the above-mentioned reactions would be, respectively:

1. a) Increase,  b) decrease, c) same

2. a) Decrease,  b) same, c) increase

3. a) Increase,  b) increase, c) same

4. a) Increase,  b) decrease, c) increase

Subtopic:  Le Chatelier's principle |
 72%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints

To unlock all the explanations of this course, you need to be enrolled.


The equilibrium reaction that doesn't have equal values for Kc and Kis: 

1. \(2NO(g) \rightleftharpoons N_2(g) + O_2(g)\)
2. \(SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)\)
3. \(H_2(g) + I_2(g) \rightleftharpoons 2HI (g)\)
4. \(2C(s) + O_2(g) \rightleftharpoons 2CO_2(g)\)

Subtopic:  Kp, Kc & Factors Affecting them |
 91%
From NCERT
AIPMT - 2010

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


For the reaction N2(g) + O2(g)2NO(g) the equilibrium constant is K1. The equilibrium constant is K2 for the reaction  2NO(g) + O2(g) 2NO2(g) 
The value of K for the reaction given below will be:
NO2(g)12N2(g) +O2(g) 

1.  14 4 K1 K2

2.  1K1K21/2

3.  1K1K2

4.  12K1K2

Subtopic:  Kp, Kc & Factors Affecting them |
 88%
From NCERT
AIPMT - 2011

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.


advertisementadvertisement

For the reaction 2NOCl(g)⇔2NO(g)+Cl2(g), KC at 427°C is \(3\times 10^{-6} \ mol\ L^{-1}\). The value of Kp will be :

1. 1.72×10-4

2. 7.50×105

3. 2.50×10-5

4. 2.50×10-4

Subtopic:  Kp, Kc & Factors Affecting them |
 84%
From NCERT

To unlock all the explanations of this course, you need to be enrolled.

Hints
Links

To unlock all the explanations of this course, you need to be enrolled.