Which among the following verified the wave nature of electrons experimentally?

1. De-Broglie 

2. Hertz

3. Einstein 

4. Davisson and Germer 

Subtopic:  Davisson & Germer Experiment (OLD NCERT) |
 62%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Consider a beam of electrons (each electron with energy \(E_0)\) incident on a metal surface kept in an evacuated chamber. Then:

1. no electrons will be emitted as only photons can emit electrons.
2. electrons can be emitted but all with energy, \(E_0\).
3. electrons can be emitted with any energy, with a maximum of \(\mathrm{E}_0-\phi\) (\(\phi\) is the work function).
4. electrons can be emitted with any energy, with a maximum \(E_0\).
Subtopic:  Electron Emission |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The threshold frequency for a photosensitive metal is \(3.3\times10^{14}~\text{Hz}\). If the light of frequency \(8.2\times10^{14}~\text{Hz}\) is incident on this metal, the cutoff voltage for the photoelectric emission will be:

1. \(1~\text{V}\) 2. \(2~\text{V}\)
3. \(3~\text{V}\) 4. \(5~\text{V}\)
Subtopic:  Einstein's Photoelectric Equation |
 69%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

An electron with \(144~\text{eV}\) of kinetic energy has a de-Broglie wavelength that is very similar to?
1. \(102\times10^{-3}~\text{nm}\)
2. \(102\times10^{-4}~\text{nm}\)
3. \(102\times10^{-5}~\text{nm}\)
4. \(102\times10^{-2}~\text{nm}\)

Subtopic:  De-broglie Wavelength |
 53%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What did Einstein prove by the photo-electric effect?
1. \(E = h\nu\)
2. \(K.E = \frac{1}{2}mv^2\)
3. \(E= mc^2\)
4. \(E = \frac{-Rhc^2}{n^2}\)

Subtopic:  Einstein's Photoelectric Equation |
 60%
From NCERT
AIPMT - 2000
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A light of wavelength \(\lambda \) is incident on the metal surface and the ejected fastest electron has speed \(v.\) If the wavelength is changed to \(\frac{3\lambda}{4},\) then the speed of the fastest emitted electron will be:

1. smaller than \(\sqrt{\frac{4}{3}}v\)
2. greater than \(\sqrt{\frac{4}{3}}\)\(v\)
3. \(2v\)
4. zero
Subtopic:  Einstein's Photoelectric Equation |
 69%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The work functions for metals \(A,B,\) and \(C\) are respectively \(1.92\) eV, \(2.0\) eV, and \(5\) eV. According to Einstein's equation, the metals that will emit photoelectrons for a radiation of wavelength \(4100~\mathring{A}\) is/are:
1. None
2. \(A\) only
3. \(A\) and \(B\) only
4. All the three metals

Subtopic:  Einstein's Photoelectric Equation |
 78%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The work function of a metal surface is \(\phi = 1.5\) eV. If a light of wavelength \(5000~\mathring{A}\) falls on it, then the maximum K.E of the ejected electron will be:
1. \(1.2\) eV 2. \(0.98\) eV
3. \(0.45\) eV 4. \(0\) eV
Subtopic:  Einstein's Photoelectric Equation |
 80%
From NCERT
AIPMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A photosensitive metallic surface has a work function of \(h\nu_0\). If photons of energy \(2h\nu_0\) fall on this surface, the electrons come out with a maximum velocity of \(4\times10^{6}\) m/s. When the photon energy is increased to \(5h\nu_0\), then the maximum velocity of photoelectrons will be:
1. \(2\times 10^7~\text{m/s}\)
2. \(2\times 10^6~\text{m/s}\)
3. \(8\times 10^5~\text{m/s}\)
4. \(8\times 10^6~\text{m/s}\)

Subtopic:  Einstein's Photoelectric Equation |
 78%
From NCERT
AIPMT - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If the K.E of an electron and a photon is the same, then the relation between their de-Broglie wavelength will be:
1. \(\lambda_{ph}< \lambda_e\)
2. \(\lambda_{ph}= \lambda_e\)
3. \(\lambda_{ph}>\lambda_e\)
4. \(\lambda_{ph}= 2\lambda_e\)
Subtopic:  De-broglie Wavelength |
 52%
From NCERT
AIPMT - 1999
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch