Light of wavelength \(500~\text{nm}\) is incident on metal with work function \(2.28~\text{eV}\). The de-Broglie wavelength of the emitted electron is:

1. \(< 2.8\times 10^{-10}~\text{m} \) 2. \(< 2.8\times 10^{-9}~\text{m}\)
3. \(\geq 2.8\times 10^{-9}~\text{m}\) 4. \(\leq 2.8\times 10^{-12}~\text{m}\)
Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Which of the following figures represent the variation of the particle momentum and the associated de-Broglie wavelength?

1.   2.
3.   4.  
Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

If the kinetic energy of the particle is increased to \(16\) times its previous value, the percentage change in the de-Broglie wavelength of the particle is:
1. \(25\)
2. \(75\)
3. \(60\)
4. \(50\)

Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The wavelength \(\lambda_e\) of an electron and \(\lambda_p\) of a photon of the same energy \(E\) are related by:
1. \(\lambda_p \propto \lambda_e\)
2. \(\lambda_p \propto \sqrt{\lambda_e}\)
3. \(\lambda_p \propto \frac{1}{\sqrt{\lambda_e}}\)
4. \(\lambda_p \propto \lambda_e^2\)
Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The de-Broglie wavelength of neutrons in thermal equilibrium at temperature \(T\) is:
1. \(\frac{3.08}{\sqrt{T}} ~\mathring{\text{A}}\)
2. \(\frac{0.308}{\sqrt{T}} ~\mathring{\text{A}}\)
3. \(\frac{0.0308}{\sqrt{T}} ~\mathring{\text{A}}\)
4. \(\frac{30.8}{\sqrt{T}} ~\mathring{\text{A}}\)
Subtopic:  De-broglie Wavelength |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

An \(\alpha\text-\)particle moves in a circular path of radius \(0.83~\text{cm}\) in the presence of a magnetic field of \(0.25~\text{Wb/m}^2\). The de-Broglie wavelength associated with the particle will be:
1. \(1~\mathring{\text{A}}\)
2. \(0.1~\mathring{\text{A}}\)
3. \(10~\mathring{\text{A}}\)
4. \(0.01~\mathring{\text{A}}\)

Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

If the momentum of an electron is changed by \(P,\) then the de-Broglie wavelength associated with it changes by \(0.5\%.\) The initial momentum of an electron will be:
1. \(400P\)
2. \(\frac{P}{100}\)
3. \(100P\)
4. \(200P\)

Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A radioactive nucleus of mass M emits a photon of frequency ν and the nucleus will recoil. The recoil energy will be:

1.  h2ν22Mc2

2.  zero

3.  c2M

4.  c2M

Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Electrons used in an electron microscope are accelerated by a voltage of 25 kV. If the voltage is increased to 100 kV, then the de-Broglie wavelength associated with the electrons would:

1.  decrease by 2 times

2.  decrease by 4 times

3.  increase by 4 times

4.  increase by 2 times

Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

A particle of mass \(1\) mg has the same wavelength as an electron moving with a velocity of  \(3\times 10^{6}\) ms-1. The velocity of the particle is:
(Mass of electron = \(9.1 \times 10^{-31}\) kg)
1. \(2.7 \times 10^{-18}~\text{ms}^{-1}\)
2. \(9 \times 10^{-2}~\text{ms}^{-1}\)
3. \(3 \times 10^{-31}~\text{ms}^{-1}\)
4. \(2.7 \times 10^{-21}~\text{ms}^{-1}\)

Subtopic:  De-broglie Wavelength |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology