According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is:

1.   2.
3. 4.
Subtopic:  Einstein's Photoelectric Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The threshold frequency of a photoelectric metal is \(\nu_0.\) If the light of frequency \(4\nu_0\) is incident on this metal, then the maximum kinetic energy of emitted electrons will be:
1. \(h\nu_0\) 2. \(2h\nu_0\)
3. \(3h\nu_0\) 4. \(4h\nu_0\)
Subtopic:  Einstein's Photoelectric Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The work function of caesium is \(2.14~\text{eV}\). The wavelength of incident light if the photocurrent is brought to zero by a stopping potential of \(0.60~\text{V}\) will be:
1. \(454~\text{nm}\)
2. \(440~\text{nm}\)
3. \(333~\text{nm}\)
4. \(350~\text{nm}\)

Subtopic:  Einstein's Photoelectric Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The light rays having photons of energy \(4.2~\text{eV}\) are falling on a metal surface having a work function of \(2.2~\text{eV}.\) The stopping potential of the surface is:
1. \(2~\text{eV}\) 2. \(2~\text{V}\)
3. \(1.1~\text{V}\) 4. \(6.4~\text{V}\)
Subtopic:  Einstein's Photoelectric Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The electric field associated with a light wave is given by \(E = E_0~ (\sin \omega_1 t)~ (\sin \omega_2 t)\).
This light wave falls on a metal having a threshold frequency, \(\nu_o.\) The maximum kinetic energy of the emitted photoelectrons will be: (\(h\) is Planck's constant)
1. Either \(\frac{h \omega_{1}}{2 \pi}\) or \(\frac{h \omega_{2}}{2 \pi}\)
2. Either\(\left(\frac{h \omega_{1}}{2 \pi}-h \nu_{0}\right)\) or \(\left(\frac{h \omega}{2 \pi}-h \nu_{0}\right)\)
3.  \(\frac{h\left(\omega_{1}+\omega_{2}\right)}{2 \pi}-h \nu_{0}\)
4. Both \(\frac{h\left(\omega_{1}+\omega_{2}\right)}{2 \pi}-h \nu_{0}\) and \(\frac{h\left |\omega_{1}-\omega_{2}\right|}{2 \pi}-h \nu_{0}\)
Subtopic:  Einstein's Photoelectric Equation |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Light of wavelength \(4000~\mathring{A}\) is incident on a metal whose work function is \(2.0\) eV. The fastest photo-electrons emitted have an energy of:
(Take \(hc=12400\) eV-\(\mathring A\))
1. \(0.5\) eV
2. \(3.1\) eV
3. \(1.1\) eV
4. \(2\) eV
Subtopic:  Einstein's Photoelectric Equation |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

​​​When a metallic surface is illuminated with radiation of wavelength \(\lambda\), the stopping potential is \({V}\). If the same surface is illuminated with radiation of wavelength \(2\lambda\), the stopping potential is \(\frac{{V}}{4}\). The threshold wavelength for the metallic surface is:
1. \(5\lambda\)
2. \(\frac{5}{2} \lambda\)
3. \(3\lambda\)
4. \(4\lambda\)
Subtopic:  Einstein's Photoelectric Equation |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology