Two slits in Young’s experiment have widths in the ratio of \(1:25\). The ratio of intensity at the maxima and minima in the interference pattern \(\frac{I_{max}}{I_{min}}\) is:

1. \(\dfrac{9}{4}\) 2. \(\dfrac{121}{49}\)
3. \(\dfrac{49}{121}\) 4. \(\dfrac{4}{9}\)
Subtopic:  Young's Double Slit Experiment |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

In a double-slit experiment, the two slits are \(1~\text{mm}\) apart and the screen is placed \(1~\text{m}\) away. Monochromatic light of wavelength \(500~\text{nm}\) is used. What will be the width of each slit for obtaining ten maxima of double-slit within the central maxima of a single-slit pattern?
1. \(0.2~\text{mm}\)
2. \(0.1~\text{mm}\)
3. \(0.5~\text{mm}\)
4. \(0.02~\text{mm}\)
Subtopic:  Young's Double Slit Experiment |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is \(\lambda\) is \(K\), (\(\lambda\) being the wavelength of light used). The intensity at a point where the path difference is \(\frac{\lambda}{4}\) will be:
1. \(K\)
2. \(\frac{K}{4}\)
3. \(\frac{K}{2}\)
4. zero

Subtopic:  Young's Double Slit Experiment |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

In Young’s double slit experiment, the slits are \(2~\text{mm}\) apart and are illuminated by photons of two wavelengths \(\lambda_1 = 12000~\mathring{A}\) and \(\lambda_2 = 10000~\mathring{A}\). At what minimum distance from the common central bright fringe on the screen, \(2~\text{m}\) from the slit, will a bright fringe from one interference pattern coincide with a bright fringe from the other?
1. \(6~\text{mm}\)
2. \(4~\text{mm}\)
3. \(3~\text{mm}\)
4. \(8~\text{mm}\)

Subtopic:  Young's Double Slit Experiment |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

In Young's-double slit experiment, the distance between the slits and the screen is doubled. The separation between the slits is reduced to half. As a result the fringe width:
1. is halved
2. become four times
3. remains unchanged
4. is doubled
Subtopic:  Young's Double Slit Experiment |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology