A string is stretched between fixed points separated by \(75.0~\text{cm}\). It is observed to have resonant frequencies of \(420~\text{Hz}\) and \(315~\text{Hz}\). There are no other resonant frequencies between these two. The lowest resonant frequency for this string is:
1. \( 155 \mathrm{~Hz} \)
2. \( 205 \mathrm{~Hz} \)
3. \( 10.5 \mathrm{~Hz} \)
4. \( 105 \mathrm{~Hz}\)

Subtopic:  Standing Waves |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The fundamental frequency of a closed organ pipe of a length \(20\) cm is equal to the second overtone of an organ pipe open at both ends. The length of the organ pipe open at both ends will be:

1. \(80\) cm 2. \(100\) cm
3. \(120\) cm 4. \(140\) cm
Subtopic:  Standing Waves |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

If \(n_1\), \(n_2\), and \(n_3\) are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency \(n\) of the string is given by:
1. \( \frac{1}{n}=\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3}\)
2. \( \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n_1}}+\frac{1}{\sqrt{n_2}}+\frac{1}{\sqrt{n_3}}\)
3. \( \sqrt{n}=\sqrt{n_1}+\sqrt{n_2}+\sqrt{n_3}\)
4. \( n=n_1+n_2+n_3\)

Subtopic:  Standing Waves |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The number of possible natural oscillations of the air column in a pipe closed at one end of length \(85\) cm whose frequencies lie below \(1250\) Hz are:(velocity of sound= \(340~\text{m/s}\)
1. \(4\)
2. \(5\)
3. \(7\)
4. \(6\)

Subtopic:  Standing Waves |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

If we study the vibration of a pipe open at both ends, then which of the following statements is not true:
1. Odd harmonics of the fundamental frequency will be generated.
2. All harmonics of the fundamental frequency will be generated.
3. Pressure change will be maximum at both ends.
4. The open end will be an antinode.
Subtopic:  Standing Waves |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The length of a wire between the two ends of a sonometer is \(100\) cm. What should be the positions of two bridges below the wire so that the three segments of the wire have their fundamental frequencies in the ratio \(1:3:5\)?
1. \(\frac{1500}{23} \mathrm{~cm}, \frac{500}{23} \mathrm{~cm} \)
2. \(\frac{1500}{23} \mathrm{~cm}, \frac{300}{23} \mathrm{~cm} \)
3. \(\frac{300}{23} \mathrm{~cm}, \frac{1500}{23} \mathrm{~cm} \)
4. \(\frac{1500}{23} \mathrm{~cm}, \frac{2000}{23} \mathrm{~cm}\)
Subtopic:  Standing Waves |
Please attempt this question first.
Please attempt this question first.
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology