A certain number of spherical drops of a liquid of radius \({r}\) coalesce to form a single drop of radius \({R}\) and volume \({V}\). If \({T}\) is the surface tension of the liquid, then:

1. energy \(= 4{VT}\left( \frac{1}{{r}} - \frac{1}{{R}}\right)\) is released.
2. energy \(={ 3{VT}\left( \frac{1}{{r}} + \frac{1}{{R}}\right)}\) is released.
3. energy \(={ 3{VT}\left( \frac{1}{{r}} - \frac{1}{{R}}\right)}\) is released.
4. energy is neither released nor absorbed.

Subtopic:  Surface Tension |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

The wettability of a surface by a liquid depends primarily on:
1. surface tension.
2. density.
3. angle of contact between the surface and the liquid.
4. viscosity.
Subtopic:  Surface Tension |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology