The potential energy of a system of four particles placed at the vertices of a square of side \(l\) (as shown in the figure below) and the potential at the centre of the square, respectively, are:

                      

1. \(- 5 . 41 \dfrac{Gm^{2}}{l}\) and \(0\)

2. \(0\) and \(- 5 . 41 \dfrac{Gm^{2}}{l}\) 

3. \(- 5 . 41 \dfrac{Gm^{2}}{l}\) and \(- 4 \sqrt{2} \dfrac{Gm}{l}\)

4. \(0\) and \(0\)

Subtopic:  Gravitational Potential Energy |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology

Two uniform solid spheres of equal radii \({R},\) but mass \({M}\) and \(4M\) have a centre to centre separation \(6R,\) as shown in the figure. The two spheres are held fixed. A projectile of mass \(m\) is projected from the surface of the sphere of mass \(M\) directly towards the centre of the second sphere. The expression for the minimum speed \(v\) of the projectile so that it reaches the surface of the second sphere is:

1. \(\left(\dfrac{3 {GM}}{5 {R}}\right)^{1 / 2}\)
2. \(\left(\dfrac{2 {GM}}{5 {R}}\right)^{1 / 2}\)
3. \(\left(\dfrac{3 {GM}}{2 {R}}\right)^{1 / 2}\)
4. \(\left(\dfrac{5 {GM}}{3 {R}}\right)^{1 / 2}\)
Subtopic:  Gravitational Potential Energy |
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
To view explanation, please take trial in the course below.
NEET 2025 - Target Batch
Please attempt this question first.
Launched MCQ Practice Books

Prefer Books for Question Practice? Get NEETprep's Unique MCQ Books with Online Audio/Video/Text Solutions via Telegram Bot

NEET MCQ Books for XIth & XIIth Physics, Chemistry & Biology