A parallel plate capacitor is charged by connecting it to a battery through a resistor. If \(i\) is the current in the circuit, then in the gap between the plates:
1. | A displacement current of magnitude equal to \(i\) flows in the same direction as \(i.\) |
2. | A displacement current of magnitude equal to \(i\) flows in the opposite direction to \(i.\) |
3. | A displacement current of magnitude greater than \(i\) flows but it can be in any direction. |
4. | There is no current. |
1. | the energy density in electric field is equal to energy density in magnetic field. |
2. | they travel with a speed equal to \(\dfrac{1}{\sqrt{\mu_0~ \varepsilon_0}} .\) |
3. | they originate from charges moving with uniform speed. |
4. | they are transverse in nature. |
List-I | List-II | ||
A. | \( \oint \vec{E} \cdot d \vec{A}=\dfrac{Q}{\varepsilon_0}\) | I. | Ampere-Maxwell's Law |
B. | \( \oint \vec{B} \cdot d \vec{A}=0 \) | II. | Faraday's Law |
C. | \( \oint \vec{E} \cdot d\vec{ l}=\dfrac{-d(\phi)}{d t} \) | III. | Gauss Law of electrostatics |
D. | \( \oint \vec{B} \cdot d\vec{l}=\mu_0 i_c+ \mu_0 \varepsilon_0 \dfrac{d\left(\phi_E\right)}{d t}\) | IV. | Gauss's law of magnetism |
1. | A-III, B-IV, C-II, D-I |
2. | A-IV, B-III, C-II, D-I |
3. | A-III, B-II, C-IV, D-I |
4. | A-IV, B-I, C-III, D-II |
1. | \(3 \times 10^{-8} \text{cos}\left(1.6 \times 10^3 x+48 \times 10^{10} t\right) \hat{i}~\text{ V/m}\) |
2. | \(3 \times 10^{-8} \text{sin} \left(1.6 \times 10^3 {x}+48 \times 10^{10} {t}\right) \hat{{i}}~ \text{V} / \text{m}\) |
3. | \(9 \text{sin} \left(1.6 \times 10^3 {x}-48 \times 10^{10} {t}\right) \hat{{k}} ~~\text{V} / \text{m}\) |
4. | \(9 \text{cos} \left(1.6 \times 10^3 {x}+48 \times 10^{10} {t}\right) \hat{{k}}~~\text{V} / \text{m}\) |
1. | \(10\hat i~\text{nT}\) | 2. | \(-10\hat i~\text{nT}\) |
3. | \(\hat i~\text{nT}\) | 4. | \(-\hat i~\text{nT}\) |