A calorie is a unit of heat (energy in transit) and it equals about \(4.2~\text J\) where \(1~\text J = 1~\mathrm{kgm^{2}s^{–2}}.\) Suppose we employ a system of units in which the unit of mass equals \(\alpha~\text{kg},\) the unit of length equals \(\beta~\text{m}\), the unit of time is \(\gamma~\text{s}.\) What is the magnitude of a calorie in terms of the new units?
1. \(4.2\alpha^{–1}\beta^{–1}\gamma^2\)

2. \(4.2\alpha^{–2}\beta^{–2}\gamma^2\)
3. \(4.2\alpha^{–1}\beta^{–2}\gamma^2\)
4. \(4.2\alpha^{–1}\beta^{–2}\gamma^1\)

Hint: We have to consider the dimensional formulas of the quantities given and use the values given in the question.
Step 1: Conversion in the new unit as:
1m'=βm1kg'=αkg1s'=γs1m=1βm'
1kg=1αkg'1s=1γs'
Step 2:
1J=1kg×(1m)2×(1s)-2
=1αkg'×1βm'2×1γs'-2
=γ2α-1β-2kg'm'2s'-21cal=4.2α-1β-2γ2.