Q. 36 A satellite is to be placed in an equatorial geostationary orbit around the earth for communication.

(a) Calculate the height of such a satellite.

(b) Find out the minimum number of satellites that are needed to cover the entire earth, so that at least one satellite is visible from any point on the equator.

[M=6×1024kg, R=6400 km, T=24 h, G= 6.67×10-11 SI unit]
Hint: A geostationary satellite is a satellite that revolves with the rotation of the earth.
Consider the adjacent diagram.

Given, the mass of the earth M =6×1024 kg
The radius of the earth, R = 6400 km =64×106 m
Time period, T = 24 h = 24x60x60 = 86400 sec
G =6.67×10-11 N-m2/kg2
Step 1: Find the height of the satellite.
(a) Time period, T=2π(R+h)3GM                   vo=GMR+h and T=2π(R+h)v0
T2=4π2(R+h)3GM (R+h)3=T2GM4π2
R+h=T2GM4π21/3h=T2GM4π21/3-Rh=(24×60×60)2×6.67×10-11×6×10244×(3.14)21/3-6.4×106      =4.23×107-6.4×106      =(42.3-64)×106      =35.9×106 m      =3.59×107 m
 
Step 2: Find the no. of satellites.
(b) If the satellite is at height h from the earth’s surface, then according to the diagram:
          
                           cosθ=RR+h=11+hR=11+3.59×1076.4×106                   =11+5.61=16.61=0.1513=cos 81°18'                   θ=81°18'                2θ=2×(81°18')=162°36'
If n is the number of satellites needed to cover the entire earth, then:
                           n=360°2θ=360°162°36'=2.31
Minimum 3 satellites are required to cover the entire earth.