According to Stefan’s law of radiation, a black body radiates the energy σT4 from its unit surface area every second where T is the surface temperature of the black body and σ=5.67×10-8 W/m2K4 is known as Stefan’s constant. A nuclear weapon may be thought of as a ball of radius 0.5 m. When detonated, it reaches a temperature of 106K and can be treated as a black body.

(1) Estimate the power it radiates.

(2) If the surrounding has water at 30°C, how much water can 10% of the energy produced evaporate in 1 s?

[sw=4186.0 J/kg K and Lv=22.6×105 J/ kg]

(3) If all this energy U is in the form of radiation, the corresponding momentum is p=U/c. How much momentum per unit time does it impart on a unit area at a distance of 1km?

Hint: Use Stefan's law and the principle of calorimetry.
Step 1: Find the power radiated by the body.
Given, σ=5.67×10-8 W/m2K4
 Radius, =R=0.5m, T=106K
(1) Power radiated,
                        P=σAT4=σ(4πR2)T4
  =(5.67×10-4×(3.14)×(0.5)2×(106)4
  =1.78×1017 J/s=1.8×1017 J/s
Step 2: Find the amount of water evaporated.
(2) Energy available per second, U=1.8×1017 J/s
    Actual energy required to evaporate water = 10% of 1.8×1017 J/s = =1.8×1016 J/s
Energy used per second to raise the temperature of m kg of water from 30 °C to 100 °C and then into vapour at 100°C=mswθ+mLv=m×4186×(100-30)+m×22.6×105
                                                ==2.93×105 m+22.6×105m=25.53×105m J/s
As per the question,
25.53×105m J/s=1.8×1016
m=1.8×101625.33×105=7.0×109 kg
Step 3: Find the momentum transferred by the energy per unit area.
(3) Momentum per unit time,
p=Uc=Uc=1.8×10173×108=6×108 kg-m/s2
P=momentum
U=energy
c=velocity of Light
Momentum per unit time per unit area, p'=p4πR2=6×1084×3.14×1032
             p'=47.7 N/m2                      [4πR2= Surface area]