A rail track made of steel having a length of 10 m is clamped on a railway line at its two ends (figure). On a summer day, due to a rise in temperature by 20° C, it is deformed as shown in the figure. Find x (displacement of the centre) if αsteel=1.2×10-5/°C.

              

Hint: The shape of the rail changes due to the thermal expansion of the rail.
Consider the diagram.
Step 1: Find the value of x in terms of L and L .
Applying Pythagoras theorem in the right-angled triangle in the figure.
                     L+L22=L22+x2
                  x=L+L22-L22
                        =12(L+L)2-L2
                       =12(L2+L2+2LL)-L2
                       =12(L2+2LL)
An increase in length L is very small, therefore, neglecting (L)2, we get,
                          x=12×2LL                             ...(i)
But,                    L=Lαt                                    ...(ii)
Step 2: Put the numerical values of L and L.
Substituting the value of L in Eq. (i) from Eq. (ii):
                          x=122L×Lαt=12L2αt
  =102×2×1.2×10-5×20
  =5×4×1.2×10-4
  =5×2×1.1×10-2=0.11m=11 cm