Find out the increase in moment of inertia I of a uniform rod (coefficient of linear expansion α) about its perpendicular bisector when its temperature is slightly increased by T.

Hint: The moment of inertia of the rod depends on the length of the rod.
Step 1: Find the initial moment of inertia of the rod.
Let the mass and length of a uniform rod be M and l respectively. Moment of inertia of the rod about its perpendicular bisector, (I)=Ml212
           
Step 2: Find the change in length of the rod.
An increase in length of the rod when the temperature is increased by T is given by,
                         l=l.αT                                             ...(i)
Step 3: Find the new moment of inertia of the rod and the change in the moment of inertia.
 The new moment of inertia of the rod, (I')=M12(l+l)2=M12(l2+l2+2Il)
As the change in length l is very small, therefore, neglecting (l)2, we get,
                                            I'=M12(l2+2ll)
=Ml212+Mll6=l+MIl6
 Increase in the moment of inertia,
                                    I=I'-I=Mll12=2×Ml212ll
                                      I=2·IαT                  [Using Eq.(i)]