14.25
A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation x=acos(ωt+θ) and note that the initial velocity is negative.]

Thedisplacementequationisgivenby:
x=Acosωt+θ
Velocity,v=dxdt=-Aωsinωt+θ
Att=0,x=x0Acosθ=x0...i
And,dxdt=-v0=Aωsinθ
Asinθ=v0ω...ii
Squaringandaddingequations(i)and(ii),weget:
A2(cos2θ+sin2θ)=x02+(v02ω2)A=x02+(v0ω)2
Hence,theamplitudeoftheresultingoscillationisx02+v0ω2.