If each diode in figure has a forward bias resistance of 25 Ω and infinite resistance in reverse bias, what will be the values of the currents I1, I2, I3 and I4?

                           

Hint: Identify the series and parallel combinations.
Step 1: Find the equivalent resistance of the circuit.
Given,
Forward biased resistance=25 Ω
Reverse biased resistance=
As the diode in branch CD is reverse biased which is having infinite resistance,
so I3=0
Resistance in branch AB=25+125=150 Ω say R1
Resistance in branch EF=25+125=150 Ω say R2
AB is in parallel combination with EF.
So, resultant resistance 1R'=1R1+1R2=1150+1150=2150
 R'=75 Ω
Total resistance R=R'+25=75+25=100 Ω
Step 2: Find the currents in the circuit.
Current I1=VR=5100=0.05 A
I1=I4+I2+I3   (Here I3=0)
So, I1=I4+I2
Here, the resistance R1 and R2 is the same.
i.e., I4=I2
I1=2I2
I2=I12=0.052=0.025 A
and I4=0.025 A
Thus, I1=0.05 A, I2=0.025 A, I3=0.025 A, I3=0 and I4=0.025 A