If each diode in figure has a forward bias resistance of 25Ω and infinite resistance in reverse bias, what will be the values of the currents I1,I2,I3andI4?

                           

Hint: Identify the series and parallel combinations.
Step 1: Find the equivalent resistance of the circuit.
Given,
Forwardbiasedresistance=25Ω
Reversebiasedresistance=
As the diode in branch CD is reverse biased which is having infinite resistance,
soI3=0
ResistanceinbranchAB=25+125=150ΩsayR1
ResistanceinbranchEF=25+125=150ΩsayR2
AB is in parallel combination with EF.
So,resultantresistance1R'=1R1+1R2=1150+1150=2150
R'=75Ω
TotalresistanceR=R'+25=75+25=100Ω
Step 2:Findthecurrentsinthecircuit.
CurrentI1=VR=5100=0.05A
I1=I4+I2+I3(HereI3=0)
So,I1=I4+I2
Here, the resistance R1 and R2 is the same.
i.e.,I4=I2
I1=2I2
I2=I12=0.052=0.025A
andI4=0.025A
Thus,I1=0.05A,I2=0.025A,I3=0.025A,I3=0andI4=0.025A