The gravitational force between \(\text H\text-\)atom and another particle of mass \(m\) will be given by Newton's law \(F=\dfrac{GMm}{r^2},\) where \(r\) is in \(\text{km}\) and;
1. \(M = m_{\text{proton}}+ m_{\text{electron}}.\)
2. \(M = m_{\text{proton}}+ m_{\text{electron}}-\frac{B}{c^2}\left(B= 13.6~\text{eV}\right)\).
3. \(M\) is not related to the mass of the hydrogen atom.
4. \(M = m_{\text{proton}}+ m_{\text{electron}}-\frac{|V|}{c^2}(|V|=\) magnitude of the potential energy of electron in the \(\text H\text-\)atom).
Hint: The mass defect is given by;  \(\Delta M = \frac{B}{C^2}\)

Step: Find the net effective mass.
Given, 
\(F=\frac{GMm}{r^2} \)
The net effective mass is given by;
Total mass = mass of proton + mass of electron -mass defect
The mass defect is given by ; 
\(\Rightarrow \Delta M = \frac{B}{C^2}\)
where binding energy \(B=13.6~\text{eV} ,\) \(c\) is the speed of light.
Substituting this value, we get;
\(\Rightarrow M=m_{proton} + m_{electron} -\Delta m\)
\(\Rightarrow M = m_{\text{proton}}+ m_{\text{electron}}-\frac{B}{c^2}\)
Hence, option (2) is the correct answer.