13.25 A source contains two phosphorous radio nuclides \({ }_{15}^{32} \mathrm{P}\) (T1/2 = 14.3 days) and \({ }_{15}^{33} \mathrm{P}\) (T1/2 = 25.3 days). Initially, 10% of the decays come from \({ }_{15}^{33} \mathrm{P}\). How long one must wait until 90% do so?

Hint: \(N=N_oe^{-\lambda t}\)
Step 1: Find the initial and final number of nuclie in both elements.

Half-lifeofP1532,T1/2=14.3days
Half-lifeofP1533,T'1/2=25.3daysandP1533nucleusdecayis10%ofthetotalamountofdecay.
Thesourcehasinitially10%ofP1533nucleusand90%ofP1532nucleus.
Supposeaftertdays,thesourcehas10%ofP1532nucleusand90%ofP1533nucleus.
Initially:
NumberofP1533nucleus=N
NumberofP1532nucleus=9N
Finally:
NumberofP1533nucleus=9N'
NumberofP1532nucleus=N'

Step 2: Write the equations for both elements.
For \({ }_{15}^{33} \mathrm{P}\) nucleus, we can write the number ratio as:

N'9N=121T1/2
N'=9N(2)-125.3...........................(1)
For\({ }_{15}^{32} \mathrm{P}\) nucleus,wecanwritethenumberratioas:
\(\begin{aligned} \frac{9 N^{\prime}}{N} &=\left(\frac{1}{2}\right)^{\frac{1}{T_{1 / 2}}} \\ 9 N^{\prime} &=N(2)^{\frac{-1}{14. 3}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .(2) \end{aligned}\)


Step 3: Find the required time.
On dividing the equation (1) by the equation (2), we get:
\(\frac{1}{9}=9 \times 2\left(\frac{-t}{25.3} +\frac{t}{14.3}\right)\)


181=211t25.3×14.3
log1-log81=-11t25.3×14.3log2
-11t25.3×14.3=0-1.9080.301
t=25.3×14.3×1.90811×0.301208.5days
Hence,itwilltakeabout208.5daysfor90%decayofP1533.