13.12 Find the Q-value and the kinetic energy of the emitted α-particle in the α-decay of (a) \({ }_{88}^{226} \mathrm{Ra}\) and (b) \({ }_{86}^{220} \mathrm{Rn}\).

Given: m (\({ }_{88}^{226} \mathrm{Ra}\)) = 226.02540 u, m (\({ }_{86}^{222} \mathrm{Rn}\)) = 222.01750 u,

m (\({ }_{86}^{220} \mathrm{Rn}\)) = 220.01137 u, m (\({ }_{84}^{216} \mathrm{Po}\)) = 216.00189 u.

Hint: Q-value is given by mass defect as, \(E=\Delta mc^{2}\).
(a)
Step 1:
Find the reaction for α-decay of  \({ }_{88}^{226} \mathrm{Ra}\).
Alpha particle decay of R88226a emits a helium nucleus. As a result, its atomic mass number reduces to (226-4) 222 and its atomic number reduces to (88-2) 86. This is shown in the following nuclear reaction:
R86226aR86222a+H24e
Step 2: Find the Q-value and kinetic energy of α-particle in α-decay of  \({ }_{88}^{226} \mathrm{Ra}\).
Q-value of emitted α-particle=(Sum of initial mass - Sum of final mass)xc2
where, c=speed of light
It is given that:
mR86226a=226.02540 u
mR86222n=222.01750 u
mH24e=4.002603 u
Q-value=226.02540-222.01750+4.002603u c2=0.005297 u c2
But 1 u =931.5 MeV/c2
Q=0.005297×931.54.94 Mev
Kinetic energy of the α-particle=Mass number after decayMass number before decay×Q=222226×4.94=4.85 MeV
(b)
Step 3:
Find the reaction for α-decay of  \({ }_{86}^{220} \mathrm{Rn}\).
Alpha particle decay of \({ }_{86}^{220} \mathrm{Rn}\)
Rn86220P84216o+He4e
Step 4: Find the Q-value and kinetic energy of α-particle in α-decay of  \({ }_{86}^{220} \mathrm{Rn}\).
It is given that:
Mass of R86220n=220.01137 u and mass of P84216o=216.00189 u
Q-value=220.01137 -216.0019+4.00260×931.5641 MeV
The kinetic energy of the α-particle =220-4220×6.41=6.29 MeV