12.7 (a) Using the Bohr’s model, calculate the speed of the electron in a hydrogen atom in the n = 1, 2, and 3 levels. (b) Calculate the orbital period in each of these levels.

Hint: The centripetal force to the electron is provided by the electrostatic force between the nucleus and the electron.
(a)
Step:
Find the velocity of the electron in the first orbit.
Let v1 be the orbital speed of the electron in a hydrogen atom in the ground-state level, n1 =1.
For an electron,  v1 is given by the relation,
\(v_{1}=\frac{e^{2}}{n_{1} 4 \pi \epsilon_{0} \frac{h}{2 \pi}}=\frac{e^{2}}{2 \epsilon_{0} h}\)
where,  e=1.6×10-19 C
0 = Permittivity of free space = 8.85×10-12 N-1 C2 m-2
h = Planck's constant = 6.62×10-34 js
\({v}_{1}=\frac{1.6 \times 10^{-19^{2}}}{2 \times 8.85 \times 10^{-12} \times 6.62 \times 10^{-34}}=0.0218 \times 10^{8}=2.18 \times 10^{6} \mathrm{~m} / \mathrm{s}\)
For level n2 =  2, we can write the relation for the corresponding orbital speed as:
\(v_{2}=\frac{e^{2}}{n_{2}\times2 \epsilon_{0} h}=\frac{n_1}{2}=1.09 \times 10^{6} \mathrm{~m} / \mathrm{s}\)
And, for n3 = 3, we can write the relation for the corresponding orbital speed as
\(v_{3}=\frac{e^{2}}{n_{3}\times2 \epsilon_{0} h}=\frac{n_1}{3}=7.27 \times 10^{5} \mathrm{~m} / \mathrm{s}\)
(b)
Hint: \(T=\frac{2\pi~r}{v}\)
Step:
Find the time period of the electron in the first orbit.
Let T1 be the orbital period of the electron when it is in level n1=1.
Orbital period is related to orbital speed as:
T1=2πr1v1
where, r1  = Radius of the orbit=\(\frac{n_{1}^{2} h^{2} \epsilon_{0}}{\pi m e^{2}}\)
h = Planck's constant = 6.62×10-34  Js and
e = Charge on an electron =1.6×10-19 C
0 = Premitivity of free space =8.85×10-12N-1C2m-2
m = mass of an electron =9.1×10-31kg
\(T_{1}=\frac{2 \pi r_{1}}{v_{1}}=\frac{2 \pi \times 1^{2} \times 6.62 \times 10^{-34^{2}} \times 8.85 \times 10^{-12}}{2.18 \times 10^{6} \times \pi \times 9.1 \times 10^{-31} 1.6 \times 10^{-19^{2}}}=15.27 \times 10^{-17}=1.527 \times 10^{-16} \mathrm{sec}\)
\(T_{2}=\frac{2 \pi r_{2}}{v_{2}}={n_2}^{3} \times (T_1)=1.22\times10^{-15}~sec\)
\(T_{3}=\frac{2 \pi r_{3}}{v_{3}}={n_3}^{3} \times (T_1)=4.12\times10^{-15}~sec\)