Two batteries of emf \(\varepsilon_1\) and \(\varepsilon_2\) \((​​\varepsilon_2 > \varepsilon_1)\) respectively are connected in parallel as shown in the figure.

          

1. The equivalent emf \(\varepsilon_{eq}\) of the two cells is between \(\varepsilon_1\) and \(\varepsilon_2\) i.e, \(\varepsilon_1<\varepsilon_{e q}<\varepsilon_2\)
2. The equivalent emf \(\varepsilon_{eq}\) is smaller than \(\varepsilon_1\)
3. The \(\varepsilon_{eq}\) is given by \(\varepsilon_{e q}=\varepsilon_1+\varepsilon_2\) always
4. \(\varepsilon_{eq}\) is independent of internal resistances \(r_1\) and \(r_2\)

Hint: \(\varepsilon_{{eq}}=\frac{\varepsilon_2 {r}_1+\varepsilon_2 {r}_2}{{r}_1+{r}_2}\)

Step: Find the relationship between \(\varepsilon_1,\varepsilon_{eq}\) and \(\varepsilon_2.\)
The equivalent emf \(\varepsilon_{eq}\) of batteries in a parallel combination is given by; 
\(\Rightarrow \varepsilon_{{eq}}=\frac{\varepsilon_2 {r}_1+\varepsilon_2 {r}_2}{{r}_1+{r}_2}\)
Since \(r_1\) and \(r_2\) is positive, the value of \(\varepsilon_{eq}\) lies between \(\varepsilon_1\) and \(\varepsilon_2.\)
It is also stated that \((​​\varepsilon_2 > \varepsilon_1)\) then, \(\varepsilon_1<\varepsilon_{e q}<\varepsilon_2.\)
Hence, option (1) is the correct answer.